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Outline:

1. Overview of mid-IR rare earth transitions
= need for non-oxide glass host

2. Nonradiative relaxation
= theory and experiment

Fiber lasers demonstrated to date

4. Fiber laser modeling
= cascade lasing to avoid bottlenecking
* include fiber attenuation loss
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Upper limit on transition wavelength set by:

» Optical transparency band of glass host hwv
selenide 250 cm-’
sulfide 350 cm”
fluoride 550 cm’
oxide 1100 cm'1
| | | I i I | | |
0 2 4 6 10

Wavelength (um)

» Nonradiative quenching of upper laser level %
selenide radiative % nonradiative
sulfide %
fluoride Y %
oxide
Rule of thumb:
I | I I | | | | | Need more than
0 2 4 6 10 5 phonons to

Wavelength (um)

bridge gap
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absorption coefficient (cm™')
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somewhat arbitrary
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Nonradiative relaxation:
does the energy gap law work 1n chalcogenide glasses?

W (T) = B[1 +n(T)]’e »AE  multiphonon

relaxation rate

_ [Shw/kT 1 thermally generated
H(T) — [e f o H phonons per mode

:
:
AE g
:
:

o | number of phonons
P = AE/ ho needed to bridge gap

reduced logarithmic
slope at finite T
where ln(l + H) p




Verifying the energy gap law experimentally
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Experimental determination of energy gap law parameters

—8, SE— 4S:uz"' 5F4
I ‘D2 )
FEW
4Iar2
‘G, 4:I:wz
°F,+°F, L
Hy+'F,
GHE:-
—— °H, 4:|:IerrE
Pr Er
1. Measure absorption spectra, do Judd-Ofelt analysis
2. Calculate all radiative decay rates
3. Measure fluorescence lifetimes for above transitions
4. Determine total nonradiative rate from W, =1/t - W,
5. Vary temperature to determine the true multiphonon rate




Example variation of fluorescence lifetime with temperature
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Origin of extra nonradiative decay

1. Is this real or experimental artifact?

» Error bars are conservative, and difference is outside error bars
» For ground state transitions use reciprocity as well as Judd-Ofelt
» For Pr !G, use additional independent method to measure QE

2. Possibly energy transfer to native defects in the glass

» Mid-gap defect states responsible for photoluminescence,
photodarkening, etc.

> But some transitions (Er #I,,, — %I,5,,) do not suffer additional
nonradiative decay

3. More likely: energy transfer to localized vibrational modes
» H-S vibrations at 2500 and 3200 cm’!
» Resonance with several Pr, Dy, Er transitions

» Er*,, lifetime decreases when H-S concentration > 100
ppm [Moizan, SPIE 6469, 64690E (2007)]

» Two classes of doped 1ons:
= Jons close enough to H-S to be highly quenched
= Jons far enough away to be unquenched



Limits on RE-doped chalcogenide fiber laser performance

Nonradiative quenching of upper laser level
» Need to minimize H-S, H-Se, OH content of glass

Excited-state absorption may reduce or eliminate gain

» Gain may still be possible at certain wavelengths

Bottle-necking may limit population inversion

» Co-dope with 2M RE ions; energy transfer from
lower laser level to added RE ion

» Maintain population inversion by cascade lasing

Fiber attenuation may limit round-trip gain
» Minimize H-S, H-Se, OH content

A

2
-1 H11fz

4
— Fsp2
4

Fap

1.3

4
T Lise

y

I13\#2

4

I1‘1.1'2

4
IQJ'Q

Nd

ESA

6
6, F
9/2
Hap

o o

6
6. F
11/2
Hop

6
H11/’2

4.5

6
Hia
3.0

6
H15/2
Dy

Bottle-
necking



Fiber lasers demonstrated to date
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from Jackson et al., Opt. Lett. 24, 1133 (1999)



Fiber lasers demonstrated to date

Ho:ZBLAN A =2.86 um

Jackson, SPIE 6453, 64530B (2007)
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Fiber lasers demonstrated to date

Beyond 3 um:  ....still waiting....

» Wavelength range 4.5 - 4.7 um of interest
> SH,,, > °H,,, transition of Dy*" possible candidate

» Need low-phonon energy host (chloride crystal, chalcogenide
glass)

» Problem: bottlenecking of population due to long lifetime of
lower laser level (°H,;, )

> Solution (this work): cascade lasing on the °H,,, = °H,,, and
°H,,, = °H,;,, transitions can serve to effectively depopulate
the °H,, level



Dy3* lower energy levels

15/2

» model includes stimulated emission and absorption between all
three levels
» accounts for an arbitrary degree of population saturation



All-fiber scheme for cascade lasing

Dy:GeAsGaSe fiber output 4600 nm

pump 1710 nm
I8

Mo
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T T N - splice
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1

high reflectors

FBGI: lasing wavelength A, = 4600 nm

Fiber Bragg gratings: ,
FBG2: idler wavelength A, = 3350 nm



Model Calculations

dN,
L= N, + N,
dt
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until self-consistent
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PARAMETERS FOR FIBER LASER MODEL

Symbol Quantity Value

N Dy 1on density 7 x 10 em™

a core radius 5.5 um

NA numerical aperture 0.2

Rer inner cladding radius 30 um

o2 fiber loss at 3 um 1 dB/m

Ta lifetime of level 3 2 ms

T lifetime of level 2 5.2 ms

B> branching ratio for 3—2 transition 0.15

Ry cut output coupler reflectivity for 7., 0.05

Riur high reflector reflectivity for 2., |

R cut output coupler reflectivity for 7., 0.9

R>ur high reflector reflectivity for 7.- 1

oy peak cross section at 4383 nm 1.59 x 10~" cm”
G peak cross section at 2926 nm 1.14 x 107" em’

absorption cross section at 1710 nm

0.52 x 10~ emr”
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Dy:GAGSe cascade lasing Pump:
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output power (mW)
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Summary of Dy fiber laser modeling

cascade lasing scheme will result in a highly efficient and
power-scaleable laser around 4600 nm

Significant enhancements in efficiency are predicted
compared with a traditional single-laser-wavelength
scheme

A key requirement for efficient operation will be fiber
losses 1n the 1-3 dB/m range or smaller.

high loss in the 4.5 um region due to HSe impurities may
be reduced by special purification techniques [B. Cole et
al., J. Non-Cryst. Solids, vol. 256&257, pp. 253-259,
1999 ], and losses in the few dB/m range should be
feasible



Conclusions

Fiber lasers can be designed for efficient operation in the
4 <A < 8 um range using rare earth doped chalcogenide glass

In predicting device performance, caution needed when using
multiphonon energy-gap law

Watt-class fiber lasers at ~3 um have been demonstrated using
fluoride glass, but no experimental reports yet of rare earth
doped chalcogenide glass fiber lasers

Modeling of a Dy doped selenide fiber laser at 4.6 um shows
that cascade lasing improves efficiency by preventing bottle-
necking in lower laser level

Fiber attenuation above ~1 dB/m leads to significantly reduced
output power. Need to limit H-Se content of glass.



